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Electromagnetic forces in the vacuum region of laser-driven layered grating structures
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Symmetric multilayer grating structures that have an embedded vacuum channel and that are powered by
external laser beams are analyzed for their ability to manipulate charged particle beams. It is shown that
acceleration, deflection and focusing forces can all be generated in a controlled fashion from the same grating
architecture and by adjustment of phase of the incoming laser beams
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1. Introduction

Photonic devices such as gratings [1–3] or photonic

bandgap structures [4–6] designed for the manipulation

of charged particles are capturing ever-increasing

attention, in particular for the application of laser-

driven particle acceleration. However, besides acceler-

ation of high-energy particles, little attention has been

devoted to their application for deflection or to

manipulate low-energy charged particles. This paper

expands on previous work on laser-driven deflection

from gratings [7] and presents a comprehensive

analysis of dielectric grating structures devoted to

accelerate, deflect or to focus both low-velocity

(v� 0.2–0.99c) and near-speed of light (v4 0.99c)

charged particles.
The operation of grating structures for charged

particle manipulation described in this paper is as

follows: a free-space external laser beam generates a

series of grating diffraction modes inside a vacuum

channel of the multilayer grating structure that is

provided for the particle beam. The design is chosen

such that one of these diffraction modes possesses a

phase velocity that matches that of the particle beam,

which from here on is referred to as the synchronous

mode. The eigenmode corresponding to the first space

harmonic usually has the largest amplitude. Without

any loss of generality it will be assumed that the grating

period is chosen such that the first space harmonic is

phase synchronous with the speed of the particle. The

deflection, acceleration or deceleration force that

results from the phase-synchronous space harmonic

mode depends on its electric and magnetic field

components and is determined by application of

Lorentz’ force.

We employ an eigenmode decomposition method
developed by Pai and Awada [8] to evaluate the
electromagnetic fields and their space harmonics inside
multilayer grating structures. The main advantage of
this method over direct spatial field numerical
approaches lies in its ability to directly evaluate the
spectrum of space harmonics, and more importantly,
the particular mode that is phase-synchronous with the
particle and that is responsible its cumulative interac-
tion. This mode can be either an evanescent or a
longitudinal wave. The original formulation by Pai and
Awada does not include a treatment of longitudinal-
wave eigenmodes nor of the TM polarization.

This paper is organized as follows: Section 2
presents an overview of the grating eigenmode decom-
position method and Section 3 describes the expansion
of the model to include longitudinal-wave eigenmodes.
Section 4 describes the boundary condition for the TM
polarization. Section 5 describes a traditional open
grating geometry and its shortcomings and Section 6
describes a symmetric closed vacuum channel grating
configuration that is capable of generating accelera-
tion, deflection and focusing forces by adjustment of
the grating orientation and laser beam phase.

2. Overview of the eigenmode decomposition method

The grating structure is modeled as a stack of discrete
layers of dielectric material, as shown in Figure 1(a).
Within each layer the dielectric is assumed to remain
uniform along the y and z coordinates, but can vary
along the x-axis with a periodicity equal to that of the
grating and its space harmonics. The structure is
invariant along the z-direction and the region of
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interest is assumed to have no net charge density. The

incident electromagnetic wave is also invariant along

the z-direction and hence the field solution is two-

dimensional and possesses independent TE and TM

polarizations. Both polarization modes are fully char-

acterized by the field component aligned with the

z-direction. The particle beam is assumed to travel

inside the vacuum channel layer within the xz-plane.
The grating structures that are of interest in this

paper are symmetric and include a vacuum layer which

serves as the transport channel for the electron beam.

The objective is to determine the space harmonics of

the electromagnetic field inside this layer. Consider the

nth layer of the grating. For the TM polarization the

magnetic field is parallel to the z-direction in

Figure 1(a) and is governed by Helmholz’ equation

d2

dx2
þ

d2

dy2
þ !2�" nð Þ xð ÞÞBz x, yð Þ ¼ 0,

�
ð1Þ

where "ðnÞðxÞ is the dielectric function of the nth layer

and satisfies " nð Þ xð Þ ¼ " nð Þ xþ �p
� �

and �p is the period

of the grating. The periodicity in x allows for appli-

cation of Floquet’s theorem (see, for example, [9])

where the field is described by a superposition of space

harmonics:

BðnÞz x, yð Þ ¼
Xþ1

m¼�1

 ðnÞm ð yÞe
i mkpþk0ð Þx, ð2Þ

where kp is the grating k-vector kp ¼ 2�=�p. The

superscript in Equation (2) refers to the layer number

and the subscript denotes the mode number. The

objective is to determine the amplitude of the space

harmonic modes  nð Þ
m yð Þ within each layer of the

grating structure. A Fourier transformation of

Equation (1) yields the matrix equation

d2

dy2
þ Kþ S nð Þ

� �
) nð Þ ¼ 0: ð3Þ

The matrices K and S nð Þ have the same meaning as in

the formulation presented by Pai and Awada. Next, a

linear transformation is applied to diagonalize

Equation (3) and to obtain the following matrix

equation

d2

dy2
þ E2 nð Þ

� �
( nð Þ ¼ 0 ð4Þ

where ( nð Þ represents the spectrum of grating layer

eigenmodes, which are either propagating or evanes-

cent depending on the value of the corresponding entry

in the eigenvalue diagonal matrix E2 nð Þ. Each grating

layer possesses a unique eigenmode equation and the

set of eigenmodes in each layer is related to the

corresponding space harmonics by the following

matrix transformation:

(ðnÞ ¼MðnÞ)ðnÞ, ð5Þ

where MðnÞ is the transformation matrix that diag-

onalizes Equation (3). If the layer in question is a

uniform medium, like the vacuum channel layer,

there exists a transformation where grating eigen-

modes are equal to the space harmonics;

(ðnÞ ¼ )ðnÞ. The possibility of a longitudinal wave,

not analyzed in the original formulation, occurs

when the eigenvalue is zero. The consequences for

the inclusion of these modes are described in

Section 3.

Figure 1. (a) Top-view schematic of a conceptual multi-layer grating accelerator structure. (b) Diagram of the up and down
modes at the interface between layer n and layer nþ 1, and the definition of the transmission and reflection coefficients.
(The color version of this figure is included in the online version of the journal.)

Journal of Modern Optics 1519

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
] 

at
 1

6:
19

 1
6 

A
ug

us
t 2

01
3 



3. Addition of longitudinal wave eigenmodes

Consider a particular mode j having an eigenvalue

equal to zero. Such a mode can occur when the laser

wavelength matches the grating period. For this mode

Equation (4) reduces to

d2

dy2
þ 0

� �
(ðnÞj ¼ 0: ð6Þ

The general solution to this differential equation is

(ðnÞj ¼ C1 þ C2y, where the formulation by Pai and

Awada does not consider the possibility of the linear

dependence on y for this type of eigenmode.

Nonetheless, in the same fashion as performed by Pai

and Awada the solution can be expressed as a

linear superposition of upward-propagating modes,

U
ðnÞ
j , and downward propagating modes, D

ðnÞ
j , that are

defined as

U
ðnÞ
j ¼ 1� �ðnÞy,

D
ðnÞ
j ¼ 1þ �ðnÞy: ð7Þ

These modes are both solutions to Equation (6), and

their linear superposition describes the speed-of-light

mode that propagates in the layer n. If the layer n is

vacuum, U
ðnÞ
j and D

ðnÞ
j are longitudinal waves with

speed-of-light phase velocity. This is the mode of

interest for acceleration of relativistic particles. For the

TM polarization the magnetic field of the mode U
ðnÞ
j is

described by

Bx x, y; tð Þ ¼ 0, By x, y; tð Þ ¼ 0,

Bz x, y; tð Þ ¼ A 1� �ðnÞy
� �

eikx�i!t: ð8Þ

With ~r � ~B ¼ ��"i! ~E it can be shown that inside a

vacuum layer the longitudinal electric field component,

Ex x, y; tð Þ, is nonzero and constant along the

y-direction. The other field components grow linearly

with y, and therefore in the absence of boundaries at

finite values of y the amplitude A in Equation (8) has

to be zero.

4. Boundary conditions for the TM polarization

Consider the interface between grating layers n and

nþ 1, as is shown in Figure 1(b). For the TE

polarization the boundary condition between grating

layers simplifies to a continuity of the field amplitude

and its first derivative across the layer boundary. The

plane wave eigenmodes are grouped into a set of up (u)

and down (d) propagating modes that are connected

from one layer to the next by a 2� 2 transmission

matrix. For the TM polarization the boundary

conditions are

Bz y
ðnÞ
þ

� �
¼ Bz yðnþ1Þ�

� �
,

Ex y
ðnÞ
þ

� �
¼ Ex yðnþ1Þ�

� �
: ð9Þ

The plus subscript refers to the top of the nth layer and
the minus sign refers to the bottom of the nþ 1ð Þth
layer. These field components are to be expressed in
terms of the layer eigenmode components. The first
boundary condition of Equation (9) reads
)ðnÞ ¼ )ðnþ1Þ for the space harmonics, which means
that by Equation (5) the layer eigenmodes have to
satisfy

MðnÞ
� ��1

(ðnÞ ¼ Mðnþ1Þ
� ��1

(ðnþ1Þ: ð10Þ

For the second boundary condition the electric field is
to be expressed in terms of the layer eigenmodes that
describe the Bz field. After some algebra one can show
that the second boundary condition results in

SðnÞ
� ��1

MðnÞ
� ��1

dy(
ðnÞ ¼ Sðnþ1Þ

� ��1
Mðnþ1Þ
� ��1

dy(
ðnþ1Þ,

ð11Þ

where dy is the derivative with respect to the y
coordinate. (ðnÞ represents the spectrum of up- and
downward propagating eigenmodes of the nth grating
layer. The solution for the eigenmode boundary
conditions of Equations (10) and (11) is presented in
Appendix 1.

5. Open grating structures

Metallic open-grating structures have been studied
extensively for particle acceleration [10,11] or for
generation of radiation [12,13]. Although they are
not the main object in this paper they do represent the
simplest case of a multilayer grating structure. The
synchronicity criteria that were derived for particle
acceleration from these also applies to the multilayer
grating structures described here. Without a loss in
generality, in a typical configuration the incoming laser
beam is at normal incidence with respect to the grating
surface and its electric field is aligned with the grating
grooves, corresponding to the TM polarization. The
electron beam travels at a small elevation above a
grating structure at a speed �c, where � is the speed
normalized to the speed of light, and at an angle �, as
shown in Figure 2. We shall define a coordinate system
x, y, zð Þ for the electromagnetic field components that
are aligned with the grating grooves, and another
coordinate system x0, y0, z0ð Þ that is aligned with the
particle’s trajectory for the force components. The
geometry can be viewed as a three-layer grating
structure having a first vacuum layer 05 y5 þ1

1520 T. Plettner et al.
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followed by a layer formed by the grating grooves and

a last layer of uniform dielectric material. Within the

vacuum layer the first grating diffraction mode is

phase-synchronous with the particle when the wave-

length � and the grating period �p are related by

�p ¼ �� cos�: ð12Þ

Since �
�� ��5 1 and cos�j j � 1 the grating grooves have

a period smaller than the laser wavelength, that is,

�p 5 �. This phase-synchronous mode can be shown to

correspond to first space harmonic having a positive

eigenvalue for the matrix in Equation (3). It is

therefore is evanescent and its strength decays expo-

nentially with elevation above the grating structure at a

rate

� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2p � k2

q
: ð13Þ

Such a mode is highly asymmetric with elevation above

the grating surface. A conventional particle beam

travelling above the grating has a nonzero width in the

y direction and is therefore distorted by this force

pattern.
The non-uniform field pattern from the evanescent

modes is a motivation to explore the effectiveness of

the non-evanescent ones for particle manipulation.

However, the non-evanescent modes propagate at the

speed of light of the medium (in this case vacuum) and

therefore their phase velocity projected on the particle

beam can only be equal or larger than c [3]. The special

case where the non-evanescent mode is synchronous

with c occurs when � ¼ 0 and when � ¼ �p, which

corresponds to a wave that satisfies Equation (6). Since

the boundary of the vacuum layer above the grating is

at y!1 Equation (7) reveals that the mode ampli-
tude must be zero.

6. Symmetric closed-channel grating structures

A layered grating structure of transparent material that
contains a finite-width vacuum channel brings about
two important advantages over open gratings. First,
the vacuum channel can support a nonzero amplitude
speed-of-light eigenmode that carries a longitudinal
wave. Second, the multilayer structure can be symmet-
ric and be driven from both sides by laser beams, as
shown in Figure 3(a). The evanescent modes inside the
vacuum channel produce a field pattern that due to
symmetry has a hyperbolic cosine or hyperbolic sine
profile. The structure is assumed to have the possibility
of tilted grating grooves with respect to the particle
beam direction just as the Smith Purcell structure in
Figure 2. However, in contrast to the open gratings
described before the structure is driven by two separate
laser beams approaching the vacuum channel from
opposite ends. These laser beams can be in or out of
phase with respect to each other at the center of the
vacuum channel, giving rise to a set of different
focusing and steering force patterns that are analyzed
in the next paragraphs.

Three possible structure configurations are
described. The first is a structure that can support a
speed-of-light longitudinal mode and therefore is
meant for acceleration of relativistic particles. The
second is a structure designed for acceleration of
nonrelativistic particles, and the third is a deflector for
relativistic and nonrelativistic particles. As mentioned
before, because the eigenmode corresponding to the

Figure 2. The open-grating geometry. The amplitude of the evanescent mode that interacts with the particle beam is an
exponentially decaying function with elevation above the grating surface. (The color version of this figure is included in the
online version of the journal.)
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first space harmonic is usually the largest, the struc-
tures described here have the grating period chosen
such that the first harmonic in the vacuum channel is
synchronous with the particle beam.

6.1. The speed-of-light mode, a¼ 0 tilt structure

When the laser wavelength matches the grating period
the modes presented in Equation (7) are one solution.
This mode is relevant for particles travelling at speed of
light in the x-direction. Two laser beams of equal
amplitude applied to the grating from opposite sides
generate a set of contributions whose magnetic field
components can be described by

Bðn,uÞz x, y, tð Þ ¼ U
ðnÞ
�1 1� �yð Þ þD

ðnÞ
�1 1þ �yð Þ

� �
eik0x�i!tþi�,

Bðn,d Þz x, y, tð Þ ¼ U
ðnÞ
�1 1þ �yð Þ þD

ðnÞ
�1 1� �yð Þ

� �
eik0x�i!tþi�,

ð14Þ

where Bðn,uÞz refers to magnetic field contribution from
the upward propagating laser beam and B n,dð Þ

z to that
from the downward propagating laser beam.
The factor � represents an overall phase between the
input waves and the timing of the particle. The
superscript letter n refers to the nth grating layer.
When the relative phase of the electric field compo-
nents of the input beams is equal at the center of the
channel y ¼ 0 the total field pattern is

EðnÞx x, y, tð Þ ¼ 2i
c2�

!
D
ðnÞ
�1 �U

ðnÞ
�1

� �
eik0x�i!tþi�,

EðnÞy x, y, tð Þ ¼ 2�cy D
ðnÞ
�1 �U

ðnÞ
�1

� �
eik0x�i!tþi�,

BðnÞz x, y, tð Þ ¼ 2�y D
ðnÞ
�1 �U

ðnÞ
�1

� �
eik0x�i!tþi�: ð15Þ

The electromagnetic force on the charged particle
beam is determined by Lorentz equation and is
~F ¼ qReð ~Eþ ~v� ~BÞ. The mode in question is assumed
to be synchronous with the particle. Therefore, the
phases of the field components from the mode in
question remain constant with respect to the particle
and the resulting average force is equal to the instan-
taneous force. Here it is worth pointing out that the
force from the non-synchronous modes oscillates with
respect to the particle and therefore their extended
contribution averages out. The Lorentz-force compo-
nents from the fields in Equation (15) can be
expressed as:

FðnÞx x, y,�ð Þ ¼ �2q
c2�

!
D
ðnÞ
�1 �U

ðnÞ
�1

� �
sin�,

FðnÞy x, y,�ð Þ ¼ 0,

FðnÞz x, y,�ð Þ ¼ 0 ð16Þ

and are found to only contain an accelerating

component. This force component is uniform across

the entire vacuum channel, which is an important

advantage over open grating accelerator structures

since these can only accelerate particles with the non-

uniform evanescent field pattern. Depending on the

overall phase, which is captured by the term sin� in

Equation (16), the force can be either accelerating or

decelerating. In the notation employed here it is

accelerating when � ¼ 3�=2 (corresponding to

sin�¼�1) and it is decelerating when � ¼ �=2.
When � ¼ 0 the nominal force is zero, but note

that for small positive deviations of phase it scales

linearly with �. With this condition of phase the

mode generates a longitudinal focusing force pattern

which is important for bunching of particle beams.

In contrast, when the electric field components of the

input waves are opposite the resulting force pattern

is found to be ~F nð Þ x, y, tð Þ ¼ ~0, showing that this

particular choice of phase configuration is not useful

for manipulation of particles.

6.2. The slow-wave, a^ 0 tilt structure

In contrast to the previous case, for this condition

the grating period is shorter than the laser wave-

length and the first space harmonic in the vacuum

channel is evanescent. To satisfy phase synchronicity

of the first space harmonic inside the vacuum

channel with a slow particle �5 1ð Þ the grating

k-vector must match the condition � ¼ k=kp. The

magnetic field components of the first space har-

monic in the vacuum channel produced by the up

and the down input laser beams are described by the

evanescent eigenmodes

Bðn,uÞz x, y, tð Þ ¼ U
ðnÞ
�1e
��y þD

ðnÞ
�1e
þ�y

� �
eikpx�i!tþi�,

Bðn,d Þz x, y, tð Þ ¼ U
ðnÞ
�1e
þ�y þD

ðnÞ
�1e
��y

� �
eikpx�i!tþi�:

ð17Þ

When the input wave electric field components are in-

phase the resulting electromagnetic field pattern inside

the vacuum channel is

EðnÞx x, y, tð Þ ¼ 2ic �=kð Þ D
ðnÞ
�1 �U

ðnÞ
�1

� �
cosh �yð Þeikpx�i!tþi�,

EðnÞy x, y, tð Þ ¼ 2c kp=k
� �

D
ðnÞ
�1 �U

ðnÞ
�1

� �
sinh �yð Þeikpx�i!tþi�,

BðnÞz x, y, tð Þ ¼ 2 D
ðnÞ
�1 �U

ðnÞ
�1

� �
sinh �yð Þeikpx�i!tþi�:

ð18Þ

1522 T. Plettner et al.
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The resulting Lorentz-force components are

FðnÞx x, y, tð Þ ¼ 2qc �=kð Þ D
ðnÞ
�1 �U

ðnÞ
�1

� �
cosh �yð Þ sin�,

FðnÞy x, y, tð Þ ¼ 2q D
ðnÞ
�1 �U

ðnÞ
�1

� �
� ckp=k� vx
� �

sinh �yð Þ cos�,

FðnÞz x, y, tð Þ ¼ 0: ð19Þ

With this laser beam configuration the force pattern in
the y-direction is a focusing force when � ¼ 0 or
defocusing force when � ¼ �. When the particle is
slipped by �/2 with respect to the laser beams the force
pattern in the y-coordinate is turned off and a net
acceleration force is generated. However, when the
input wave electric field components are out-of-phase
the resulting force components are

FðnÞx x, y, tð Þ ¼ �2qc �=kð Þ U
ðnÞ
�1 þD

ðnÞ
�1

� �
sinh �yð Þ sin�,

FðnÞy x, y, tð Þ ¼ 2q U
ðnÞ
�1 þD

ðnÞ
�1

� �
ckp=k� vz
� �

� cosh �yð Þ cos�,

FðnÞz x, y, tð Þ ¼ 0: ð20Þ

Near the center of the vacuum channel (y¼ 0) and
when � ¼ 0 this configuration yields a nearly uniform
deflection force directed towards one of the grating
surfaces. The direction of the deflection force can be
reversed by changing the phase of both laser beams by
�. Note that the first correction factor with a spatial
profile scales as �2y2, so as long as the transverse beam
dimension smaller than 1= 2�ð Þ the variation of the
deflection force within the beam is about 3% of the
magnitude on the center of the channel. To put this
into perspective with the open grating structure, a shift
in position by 1= 2�ð Þ results in 40% variation of the

magnitude of the deflection force. Now, when the
phase of the laser beams is changed by �/2 the deflec-
tion component vanishes and the acceleration compo-
nent is maximized. Note, however, that this particular
acceleration force pattern is not a desirable one since
its biggest effect is to introduce energy spread to the
particle beam rather than cause a net energy change.

6.3. The a 6̂ 0 tilt structure

In this particular case the particle is traveling at an
oblique orientation with respect to the grating grooves,
as illustrated in Figure 2. In the grating’s coordinates
the particle’s velocity is described by a vector of
the form

~v ¼ �c

cos�

0

sin�

0
B@

1
CA: ð21Þ

Again, assume phase synchronicity with the first space
harmonic. Therefore the grating’s k-vector satisfies
� cos� ¼ k=kp, which means that the grating period is
shorter than the laser wavelength and therefore the
synchronous mode is evanescent. When the incident
wave electric fields are in phase the field components
are given by Equation (18). The resulting force pattern
in the particle’s coordinate system is given by

F
ðnÞ
x0 x, y, tð Þ ¼ �2qc �=kð Þ D

ðnÞ
�1 �U

ðnÞ
�1

� �
� cosh �yð Þ sin� cos�,

F
ðnÞ
y0 x, y, tð Þ ¼ 2qc D

ðnÞ
�1 �U

ðnÞ
�1

� �
sinh �yð Þ

� 1= � cos�ð Þ � � cos�ð Þ cos�,

Figure 3. (a) Schematic of a possible symmetric binary grating structure powered by the laser beams from both sides. (b) Profile
of the force components inside the vacuum channel on a particle traveling in a tilted grating structure. (The color version of this
figure is included in the online version of the journal.)
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F
ðnÞ
z0 x, y, tð Þ ¼ 2qc �=kð Þ D

ðnÞ
�1 �U

ðnÞ
�1

� �
� cosh �yð Þ sin� sin �: ð22Þ

The force pattern is either a focusing force pattern in
the y-coordinate when � ¼ 0 and a deflection force
parallel to the grating (in the z-coordinate) walls that is
accompanied by a uniform acceleration component
when � ¼ �=2. If needed, the acceleration component
can be selectively cancelled out by adding a second
grating section of equal length with a laser phase
� ¼ ��=2. Figure 3(b) shows an example for the force
pattern from a 40� tilted grating structure with the
dimensions shown in Figure 3(a) and for the conditions
in Equation (22) acting on relativistic charged parti-
cles. When the incident wave electric fields have
opposite phase the force components expressed in the
particle’s coordinates are

F
ðnÞ
x0 x, y, tð Þ ¼ �2qc �=kð Þ U

ðnÞ
�1 þD

ðnÞ
�1

� �
� sinh �yð Þ sin� cos�,

F
ðnÞ
y0 x, y, tð Þ ¼ 2qc U

ðnÞ
�1 þD

ðnÞ
�1

� �
cosh �yð Þ

� 1= � cos�ð Þ þ � cos�ð Þ cos�,

F
ðnÞ
z0 x, y, tð Þ ¼ 2qc �=kð Þ U

ðnÞ
�1 þD

ðnÞ
�1

� �
� sinh �yð Þ sin� sin�: ð23Þ

When the optical phase � ¼ 0 the effective pattern
generates a nearly uniform deflection in the
y-coordinate, which is a useful configuration.
However, when shifted by �/2 the resulting force
provides a skewed acceleration pattern that introduces
energy spread to the beam.

6.4. The TE polarization

For the TE polarization the electric field is aligned with
the grating grooves and the magnetic field lies in the xy
plane. The same kind of analysis shows that for this
polarization the �¼ 0 tilt structure is unable to
generate an acceleration force regardless of the laser
phase or particle velocity. For the � 6¼ 0 tilt structure it
is found that similar to the TM polarization a
deflection, acceleration and focusing force pattern is
also possible to be generated. Table 1 summarizes the
resulting force patterns from the possible laser phase,
polarization and grating tilt angle condition. The � ¼ 0
grating geometry shows a clear advantage of the TM
over the TE polarization in the ability to generate a
uniform acceleration force.

In summary, the same multilayer binary grating
accelerator structure can generate acceleration, deflec-
tion or focusing forces on a charged particle beam by

adjustment of the phase and polarization of the
incident laser beams. Furthermore, closed symmetric
grating structures show a clear advantage over open
grating structures both in their ability to support
speed-of-light longitudinal waves for uniform acceler-
ation and for generating a symmetric force pattern.

7. Outlook

This paper demonstrates the general applicability of
simple closed channel grating structures for their use as
ultrafast particle beam manipulation elements.
Stacking of these elements is envisioned as a means
for providing an extended charged particle beam
transport system that is entirely based on laser-driven
photonic structures. Upcoming work will focus on a
higher-order analysis of some of the force patterns
described here. For instance, while the TE polarization
does not generate an accelerating or a deflection force
on the design-orbit particle (traveling at the center of
the vacuum channel and with no transverse velocity
component) it does provide a solenoid field (a magnetic
field component aligned with the particle’s direction of
motion) whose focusing properties merit closer atten-
tion. Furthermore, closer inspection of Table 1 reveals
that spatial focusing is only provided in the y-axis. This
is due to the assumed translational invariance along
the grating groove. A closer inspection of the effect of a
finite sized laser beam or a curved grating groove is
expected to reveal the existence of spatial focusing in
the other spatial coordinate. Finally, an in-depth
analysis of the aberrations from these photonic struc-
ture elements and their impact on beam emittance will
determine the feasibility of multilayer gratings as
elements of an extended beam transport system.
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Appendix 1. Derivation of the transmission and

reflection coefficients

This section derives the values of the interface transmission

and reflection coefficients between adjacent grating layers.

An upward propagating wave emerging above a layer

interface has to satisfy the boundary condition with the

upward and downward waves below the interface. This sets a

condition for the interface matrices that reads

u
ðnÞ
þ

d
ðnÞ
þ

 !
¼

CðnÞuu C
ðnÞ
ud

C
ðnÞ
du C

ðnÞ
dd

0
@

1
A u nþ1ð Þ

�

0

 !
: ð24Þ

An analogous situation is true for the downward propagating

wave emerging below a layer interface.

0

d
ðnÞ
þ

� �
¼

CðnÞuu C
ðnÞ
ud

C
ðnÞ
du C

ðnÞ
dd

 !
u nþ1ð Þ
�

d nþ1ð Þ
�

 !
: ð25Þ

The iterative approach applies the boundary conditions to

one pair of modes at a time. For example the jth up mode

above the boundary is related to the sum of up and down

modes below the boundary

V
ðnþ1Þ
j u

ðnþ1Þ
j yðnþ1Þ�

� �
¼
XN
l¼�N

V
ðnÞ
l u

ðnÞ
l y

ðnÞ
þ

� �
þ d
ðnÞ
l y

ðnÞ
þ

� �� �

SðnÞ Sðnþ1Þ
� ��1

V
ðnþ1Þ
j dyu

ðnþ1Þ
j yðnþ1Þ�

� �
¼
XN
l¼�N

V
ðnÞ
l dy u

ðnÞ
l y

ðnÞ
þ

� �
þ d
ðnÞ
l y

ðnÞ
þ

� �� �
, ð26Þ

where V
ðnÞ
j is the jth eigenvector that matches the jth

eigenvalue of matrix Kþ SðnÞ in layer n. There are four

possible cases for the up mode solution of the nth layer

depending on whether the eigenvalue of the eigenmodes in

question are zero or nonzero. The original formulation only

describes the first case with nonzero eigenvalues above and

below the interface, when in fact there is a total of four

possible cases that will be described next. Denote the nonzero

eigenvalue of the jth upper layer mode e
ðnþ1Þ
j and the ith lower

layer mode eðnÞi . Multiplication on both sides of the boundary

conditions in Equation (26) by
�
V
ðnÞ
i

�y
allows for their

diagonalization, and to evaluate a pair of the matrix coupling

coefficients of Equations (24) and (25).

A1.1. Upper and lower layer eigenvalues are nonzero

Cuuð Þ
ðnÞ
ij

�
u
ðnÞ
i y

ðnÞ
þ

� �
u
ðnþ1Þ
j yðnþ1Þ�

� �

¼

e
ðnÞ
i V

ðnÞ
i

� �y
�V
ðnþ1Þ
j

� �
þ e
ðnþ1Þ
j V

ðnÞ
i

� �y
�SðnÞ Sðnþ1Þ

� ��1
�V
ðnþ1Þ
j

� �
2eðnÞi

Cduð Þ
ðnÞ
ij

�
d
ðnÞ
i y

ðnÞ
þ

� �
u
ðnþ1Þ
j yðnþ1Þ�

� �

¼

e
ðnÞ
i V

ðnÞ
i

� �y
�V
ðnþ1Þ
j

� �
� e
ðnþ1Þ
j V

ðnÞ
i

� �y
�SðnÞ Sðnþ1Þ

� ��1
�V
ðnþ1Þ
j

� �
2eðnÞi

:

ð27aÞ

A2.1. Upper layer eigenvalue is zero

Cuuð Þ
ðnÞ
ij �

u
ðnÞ
i y

ðnÞ
þ

� �
U nþ1ð Þ

j

¼

ie
nð Þ
i V

nð Þ
i

� �y
�V

nþ1ð Þ

j

� �
1� � nþ1ð Þy nþ1ð Þ

�

� �
� � nþ1ð Þ V

ðnÞ
i

� �y
�SðnÞ S nþ1ð Þ

� ��1
�V

nþ1ð Þ

j

� �
8>>><
>>>:

9>>>=
>>>;

2ieðnÞi

Cduð Þ
ðnÞ
ij �

uðnÞi yðnÞþ

� �
U

nþ1ð Þ

j

¼

ieðnÞi V
ðnÞ
i

� �y
�V

nþ1ð Þ

j

� �
1� � nþ1ð Þy nþ1ð Þ

�

� �
þ � nþ1ð Þ V

ðnÞ
i

� �y
�SðnÞ S nþ1ð Þ

� ��1
�V

nþ1ð Þ

j

� �
8>>><
>>>:

9>>>=
>>>;

2ie
ðnÞ
i

:

ð27bÞ

A3.1. Lower layer eigenvalue is zero

Cuuð Þ
ðnÞ
ij �

U nð Þ
i

u nþ1ð Þ

j y nþ1ð Þ
�

� �

¼

� nð Þ

V
nð Þ
i

� �y
�V

nþ1ð Þ

j

� �
� ie

nþ1ð Þ

j 1� � nð Þy
nð Þ
þ

� �

� V
nð Þ
i

� �y
�S nð Þ S nþ1ð Þ

� ��1
�V

nþ1ð Þ

j

� �
8>>><
>>>:

9>>>=
>>>;

2� nð Þ

Cduð Þ
ðnÞ
ij �

D
nð Þ
i

u
nþ1ð Þ

j y nþ1ð Þ
�

� �

1526 T. Plettner et al.

D
ow

nl
oa

de
d 

by
 [

St
an

fo
rd

 U
ni

ve
rs

ity
] 

at
 1

6:
19

 1
6 

A
ug

us
t 2

01
3 



¼

� nð Þ

V
nð Þ
i

� �y
�V

nþ1ð Þ

j

� �
þ ie

nþ1ð Þ

j 1þ � nð Þy
nð Þ
þ

� �

� V
nð Þ
i

� �y
�S nð Þ S nþ1ð Þ

� ��1
�V

nþ1ð Þ

j

� �
8>>><
>>>:

9>>>=
>>>;

2� nð Þ
: ð27cÞ

A4.1. Eigenvalues on both layers are zero

Cuuð Þ
ðnÞ
ij �

U
nð Þ
i

U
nþ1ð Þ

j

¼

1�� nþ1ð Þy nþ1ð Þ
�

� �
� nð Þ V

nð Þ
i

� �y
�V

nþ1ð Þ

j

� �
þ� nþ1ð Þ

� 1þ� nð Þy
nð Þ
þ

� �
V

nð Þ
i

� �y
�S nð Þ S nþ1ð Þ

� ��1
�V

nþ1ð Þ

j

� �
8>>><
>>>:

9>>>=
>>>;

2� nð Þ

Cduð Þ
ðnÞ
ij �

D nð Þ
i

U
nþ1ð Þ

j

¼

1�� nþ1ð Þy nþ1ð Þ
�

� �
� nð Þ V

nð Þ
i

� �y
�V

nþ1ð Þ

j

� �
�� nþ1ð Þ

� 1�� nð Þy
nð Þ
þ

� �
V

nð Þ
i

� �y
�S nð Þ S nþ1ð Þ

� ��1
�V

nþ1ð Þ

j

� �
8>>><
>>>:

9>>>=
>>>;

2� nð Þ
:

ð27dÞ

The analysis for the down-propagating wave proceeds in a

similar fashion. The up- and down propagating modes above

the interface are evaluated as a function of the down-

propagating mode below the layer interface, which allows to

determine an equivalent pair of coupling coefficients.

A5.1. Upper and lower layer eigenvalues are nonzero

W
ðnÞ
ij �

u
nþ1ð Þ

i y nþ1ð Þ
�

� �
d

nð Þ
j y
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þ

� �

¼
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i V
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i

� �y
�V
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j

� �

� e
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j V
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� ��1
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� �
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2e
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i
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� �
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j y
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� �
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e
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i V
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� �
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A6.1. Upper layer eigenvalue is zero

W
nð Þ
ij �

U nþ1ð Þ

i

d
nð Þ
j y

nð Þ
þ

� �

¼

�
V

nþ1ð Þ

i

� �y
�V

nð Þ
j

�
�R nð Þ

du nþ 1ð Þþ ie
nð Þ
j 1þ � nþ1ð Þy nþ1ð Þ

�

� �
� V

nþ1ð Þ

i

� �y
�S nþ1ð Þ S nð Þ

� ��1
�V

nð Þ
j

� �
8>><
>>:

9>>=
>>;

2� nþ1ð Þ

H
nð Þ
ij �

D
nþ1ð Þ

i

d
nð Þ
j y

nð Þ
þ

� �

¼

V
nþ1ð Þ

i

� �y
�V

nð Þ
j

� �
� nþ1ð Þ � ie nð Þ

j 1� � nþ1ð Þy nþ1ð Þ
�

� �
� V

nþ1ð Þ

i

� �y
�S nþ1ð Þ S nð Þ

� ��1
�V

nð Þ
j

� �
8>>><
>>>:

9>>>=
>>>;

2� nþ1ð Þ
:

ð28bÞ

A7.1. Lower layer eigenvalue is zero
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A8.1. Eigenvalues on both layers are zero
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where the matrices W nð Þ and H nð Þ are related to the coupling

coefficients of Equations (24) and (25) by

C
nð Þ
dd ¼ I� C

nð Þ
duW

nð ÞH nð Þ
� �

H nð Þ
� ��1

,

C
nð Þ
ud ¼ �C

nð Þ
uuW

nð Þ H nð Þ
� ��1

:
ð29Þ

In the same manner as derived by Pai and Awada the specific

mode reflection and transmission matrices can be defined in

terms of the coupling matrices by

R
nð Þ
ud ¼ � C nð Þ

uu

� ��1
C

nð Þ
ud ,

T
nð Þ
dd ¼ C

nð Þ
dd � C

nð Þ
du C nð Þ

uu

� ��1
C

nð Þ
ud ,

T nð Þ
uu ¼ C nð Þ

uu

� ��1
,

R
nð Þ
du ¼ C

nð Þ
du C nð Þ

uu

� ��1
:

ð30Þ

The numerical solution is based on propagating an input

wave through the grating layers, and then propagating the

reflections from each layer interface toward the other

direction. This iteration of successively propagating the

reflected waves from each layer interface is repeated several

times until the contribution to the total wave becomes

negligible. The total wave is the sum of the initial wave plus

the reflected up and down waves calculated from the iterative

approach.
The eigenmode decomposition method is tested with an

example of a guided mode resonance Brewster filter that acts

as a high reflector mirror for TM polarized waves of a

particular wavelength at Brewster incidence [14]. The

photonic device is a grating structure whose cross-section is

shown in Figure 4. Here the same structure geometry is

analyzed with the multilayer grating decomposition method.

The geometry can be broken down into three layers; one very

thick (106�) air layer, the middle layer containing the index

modulation, and a third thick layer describing the bulk index

material. The curve for reflectance as a function of incidence

angle 	 is computed as the ratio between the power of the

downward and the upward modes corresponding to the zero-

order space harmonics in the air layer. It shows a sharp

reflectance peak that is in close agreement with the reference.

Figure 4. Map of the photonic grating structure and the reflectance as a function of incidence angle. The grating period �p is
266.2 nm and the incident laser wavelength � is 632.8 nm. The polarization of the incident wave is TM. (The color version of this
figure is included in the online version of the journal.)
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